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Abstract. Cross-sections for the synthesis of superheavy elements were analyzed using the concept of a
dinuclear system. Experimental values for the production of elements Z = 104, 108, 110, 111 and 112 by
cold fusion reactions with targets of 208Pb and 209Bi were reproduced. The model reveals the importance
of entrance channel dynamics and competition between quasi-fission and complete fusion processes. Energy
windows were observed which allow capture of the reacting nuclei and formation of the compound nucleus.
The quantities were studied which are significant for the interaction dynamics of massive nuclei in the
entrance channel.

PACS. 24.10.-i Nuclear-reaction models and methods – 25.60.Pj Fusion reactions – 25.70.Jj Fusion and
fusion-fission reactions

1 Introduction

The measured excitation functions of evaporation residues
in the synthesis of elements from the Z = 104 to Z =
112 show that the cross-section and the energy window
in which the events were observed [1] tend to decrease
sharply. The dinuclear system (DNS) concept allows a
description of the cross-sections in cold and hot fusion
reactions and an implicit estimation of the competition
between complete fusion and quasi-fission processes [2–
4]. Calculations based on the DNS-concept show that en-
trance channel effects are important to describe the ex-
perimental data in the case of collisions of massive nuclei.
The aim of this paper is to establish these effects and to
analyse the role of the intrinsic fusion barrier, the quasi-
fission barrier, the excitation energy of both the dinuclear
system and the compound nucleus. As a result we obtained
a beam energy window for the capture of the nuclei before
the system will fuse.

Using combined dynamical and statistical approaches
[5,6] the excitation functions of fusion and of evaporation
residue yield were calculated for reactions of {50Ti, 58Fe,
64Ni, 70Zn} projectiles and {208Pb, 209Bi} targets result-
ing in the elements with proton number Z =104, 108,
110, 111, 112 and 113. We compare the calculated cross-
sections with the data of experiments conducted at GSI

a e-mail: nasirov@thsun1.jinr.ru

Darmstadt, Germany, for the same reactions. We also ex-
tend our calculations for the synthesis of the superheavy
element Z = 114 using the 76Ge + 208Pb reaction. The
paper is organized as follows: the basic formalism is pre-
sented in Section 2; the results are discussed in Section 3;
the summary is given in Section 4.

2 Theoretical method

In the dinuclear system concept [2] the evaporation residue
cross-section is factorized as follows:

σer(E) =
∞∑

�=0

(2� + 1)σfus� (E, �)Wsur(E, �), (1)

where the entrance channel effects are included in the par-
tial fusion cross-section σfus� (E) defined by the expressions:

σfus� (E) = σcapture� (E)PCN(E, �), (2)

σcapturel (E) =
λ2

4π
Pcapture� (E). (3)

Here λ is the de Broglie wavelength of the entrance chan-
nel, PCN(E, �) is a factor taking into account the decrease
of the fusion probability due to break up of the dinuclear
system before fusion, Pcapture� (E) is the capture proba-
bility which depends on the collision dynamics and deter-
mines the amount of partial waves leading to capture. The
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number of the partial waves was obtained by solving the
equation of motion for the relative distance and orbital
angular momentum

µ(R(t))
··
R +γR(R(t))

·
R (t) = −∂V (R(t))

∂R
, (4)

dL
dt

= γθ(R(t))
(
θ̇R2eff − θ̇1R

2
1eff − θ̇2R

2
2eff

)
, (5)

where R(t) is the relative motion coordinate,
·
R (t) is the

corresponding velocity; θ̇, θ̇1 and θ̇2 are angular velocities
of the dinuclear system and its fragments, respectively; γR

and γθ are the friction coefficients of relative motion along
R and tangential motion when two nuclei roll on each
other’s surfaces, respectively; V (R) is the nucleus-nucleus
potential; µ(R(t)) is the reduced mass of the system; R1
and R2 are the fragment radii;

Reff =
R + R1 + R2

2
, R1(2)eff =

R1(2)

R1 + R2
R ,

where R1(2) is the nucleus radius (see expression (A.6)
in Appendix A). The friction coefficients γR(γθ) and a
change δV (R) of the nucleus-nucleus potential during the
interaction time t,

V (R(t)) = V0(R(t)) + δV (R) , (6)

are calculated from the estimation of the coupling term
between the relative motion of nuclei and the intrinsic
excitation of nuclei [5]. The explicit expressions for them
are presented in Appendix A.

The nucleus-nucleus potential includes Coulomb, nu-
clear, and rotational potentials:

V0(R) = VC(R) + Vnucl(R) + Vrot(R) (7)

(details are in Appendix A). In the calculations we took
into account the dynamic contribution δµ(R) to the re-
duced mass

µ(R) = δµ(R) + m0ATAP/Atot

×
(
1− 2

Atot

∫
ρ
(0)
1 (r − r1)ρ

(0)
2 (r − r2)

ρ
(0)
1 (r − r1) + ρ

(0)
2 (r − r2)

d3r

)
, (8)

where Atot = AT+AP , ρ
(0)
1 and ρ

(0)
2 are nucleon densities

of the dinuclear system fragments (details are in Appendix
B); r1 and r2 are coordinates of the fragment centers-of-
mass; m0 is the nucleon mass; AT and AP are mass number
of the target- and projectile-nucleus, respectively.

Calculations showed that use of these kinetic coeffi-
cients leads to gradual dissipation of kinetic and rota-
tional energy [5]. It was shown that at collisions of massive
nuclei despite of continuous dissipation the capture be-
comes impossible at larger values of beam energy than
the Coulomb barrier, because of the small size of the
well in the nucleus-nucleus potential. The dissipation is
not sufficient to trap colliding nuclei in the potential well
to create a necessary condition for fusion. In this case
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Fig. 1. Dependence of capture (solid curve) and quasi-fission
(dashed curve) processes for nucleus-nucleus collisions on the
internuclear potential V (R) and on the initial values of the
beam energy Ec.m..
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Fig. 2. Dependence of the nucleus-nucleus potential on the
mutual orientation of colliding nuclei; solid line: α1 = 30◦ and
α2 = 15◦; dashed line: α1 = 60◦ and α2 = 15◦; dotted line:
α1 = 90◦ and α2 = 15◦. The angles α1 and α2 are defined in
fig. 3.

the formed dinuclear system undergoes quasi-fission (see
sketch in fig. 1). The nucleus-nucleus potential V (R) de-
pends on the mutual orientations of the symmetry axes of
deformed nuclei relative to R(t) (fig. 2). The quadrupole
(2+) and octupole (3−) collective excitations in spherical
nuclei are taken into account. Thus, it is possible to con-
sider fusion at different initial orientations of the symme-
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Fig. 3. The coordinate systems and angles which were used
for the description of the initial orientations of projectile and
target nuclei. The beam direction is opposite to OZ.
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Fig. 4. Potential energy surface U (A, R; 	 = 0) as function of
the distance R between the centers of the nuclei and mass num-
ber A of a fragment. The arrows show directions of entrance
(a), fusion (b), and quasi-fission (c,d) channels.

try axes. In our calculation the dependence of V (R) from
the orientation of the symmetry axes is included (fig. 2)
by averaging over the orientation of the symmetry axis of
the projectile α1 with respect to the beam (fig. 3). The
competition between complete fusion and quasi-fission of
a dinuclear system formed after capture and its further
evolution are described by PCN using the method devel-
oped in [2]. This method is based on the assumption that

the dinuclear system formed in the collision of two nu-
clei evolves to fusion by increasing its mass asymmetry.
A path to fusion is determined by potential energy sur-
face U(A,Z;R) presented for the reaction 76Ge+208Pb in
fig. 4. U(A,Z;R) is calculated as a function of masses
(charges) A1, A2 (A2 = Atot − A1) of fragments forming
the dinuclear system and the distance R between their
centers:

U(A,Z;R, �) = U(A,Z, �, β1, α1;β2, α2)
= B1 + B2 + V0(Z, �, β1, α1;β2, α2;R)

−(B0 + Vcomp(�)). (9)

Here, B1, B2 and B0 are the binding energies of the nuclei
in a dinuclear system and of the compound nucleus, re-
spectively, which were obtained from [7] and from [8] par-
ticularly for the superheavy elements; βi are the fragment
deformation parameters and αi are the orientations rela-
tive to the beam direction; Vcomp(�) is the rotational en-
ergy of the compound nucleus. In this approach the mass
asymmetry degree of freedom is the important dynamic
variable to study the fusion process. The evolution of the
system along the mass asymmetry degree of freedom is
described by the driving potential U(A,Z;Rm, �). It is de-
termined from the potential energy surface U(A,Z;R, �)
as a curve marking the bottom of the valley as a function
of charge asymmetry (see fig. 4). The Rm is the position
of this minimum (bottom of the pocket) on the R axis for
a given mass asymmetry A1. One can see from (9) and
fig. 4 that sectional view of U(A,Z,R; � = 0) at a given
value of charge asymmetry Z is V0(R) moved on the Q-
value between this charge asymmetry and complete fusion
(Qgg = B1+B2−B0). The curve passes through the min-
imum of the nucleus-nucleus interaction potential for each
value of mass asymmetry A1 (on the (U,R)- plane ). The
driving potential U(A,Z;R, �, β1, α1;β2, α2) ≡ U(A,Z; �)
calculated in this way is presented in fig. 5. Note for the
cases when there is no minimum of the nucleus-nucleus
potential V (R) (case of interaction of two massive sym-
metrical nuclei), Rm was got as a point where the nuclear
part of the interaction potential Vnucl(R) has a minimum.

The ratios A1/Z1 and A2/Z2 for the fragments were
determined by minimizing U(A1, Z1;R) as a function of
A1 for each Z1.

Therefore, a dinuclear system to be fused should over-
come the intrinsic barrier (B∗

fus) which is determined by
the difference between the maximum of a driving poten-
tial and its value at the point corresponding to the initial
charge asymmetry of the considered reaction (fig. 5). The
smallest value of excitation energy of the compound nu-
cleus (E∗(min)

CN ) is determined by the top value of the driv-
ing potential (see fig. 5) which corresponds to the saddle
point on the way to complete fusion (fig. 4). It should be
noted that the shapes of the potential energy surface and
driving potential depend on which mutual orientation of
nuclei was used. The quasi-fission which is in competition
with fusion is considered as a motion in the V (R) nucleus-
nucleus interaction potential (6). Thus, for quasi-fission, it
is necessary to overcome a barrier of V (R) on the R axis.
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Fig. 5. The driving potential (solid curve, left axis) and quasi-
fission barriers (dotted curve, right axis) for the superheavy
nucleus 284114 as a function of mass (charge) number of a din-
uclear system fragment. The vertical arrows indicate an initial
charge asymmetry which corresponds to the reaction 76Ge +
208Pb. E

∗(min)
CN is the smallest possible value of the excitation

energy of compound nucleus.

The competition between fusion and quasi-fission is
taken into account by the factor PCN(E, �) which is cal-
culated using the following relation derived from the sta-
tistical model

PCN =
ρ(E∗

DNS − B∗
fus)

ρ(E∗
DNS − B∗

fus) + ρ(E∗
DNS − Bqf)

. (10)

Here ρ(E∗
DNS − B∗

K) is the level density

ρ(E∗
DNS − B∗

K) =
g(εF)Krot

2
√

g1(εF)g2(εF)

× exp
[
2π

√
g(εF)(E∗

DNS − B∗
K)/6

]
[
3
2g(εF)(E

∗
DNS − B∗

K)
] 1

4 (E∗
DNS − B∗

K)
√
48

. (11)

In eq. (10), Bqf is the barrier of the nucleus-nucleus in-
teraction potential which needs to be overcome if the din-
uclear system decays in two fragments, E∗

DNS is an ex-
citation energy of the dinuclear system given by the dif-
ference between beam energy Ec.m. and the minimum of
the nucleus-nucleus potential (E∗

DNS = Ec.m. − V (Rm)),
g1,2(εF) are the single particle level densities of the frag-
ments of the dinuclear system: gi = Aiε

−1
F (i = 1, 2) [9],

εF = 37 MeV and g = g1+g2, Krot is an enhancement fac-
tor at the level density which takes into account rotation
of the dinuclear system

Krot =

√
6(E∗

DNS − B∗
K)/g(εF)

π
J⊥, (12)

where
J⊥ = 2/5m0r20A

5/3 (1 + β2/3) (13)

is the rigid body moment of inertia for rotation around
the axis perpendicular to the line connecting the centers
of fragments. In (13), r0 = 1.18 fm, β2 is the parameter of
the fragment quadrupole deformation the value of which
was obtained from [7] and [8]. For axially and mirror-
symmetric nuclei, the Krot enhancement factor is equal to
σ2⊥, where σ2⊥ = (J⊥T )/h̄2 is the spin-dependent parame-
ter and T is the effective nuclear temperature which was
calculated by expression (A.14). The enhancement factor
(12) of the level density describes an adiabatic limit in
which intrinsic and rotational degrees of freedom are com-
pletely decoupled. This assumption ceases to be valid for
higher excitation energies. Following [10,11], we account
for the damping of the rotational enhancement multiply-
ing the Krot factor by

1− Qrot

(
1− 1

h̄2/J⊥T

)
. (14)

This expression is tailored [11] to approach unity, essen-
tially leaving the entire rotational contribution to the level
densities intact, at temperatures T which are low com-
pared with the Coriolis energy Ecor, and tends to the
inverse of the rotational enhancement factor h̄2/J⊥T at
T � Ecor, leading to the cancellation of the rotational
enhancement. To this end, the Qrot function is arbitrar-
ily related to the Fermi-gas occupation probability of the
single-particle levels at energy Ecor

Qrot =
2

exp(Ecor/T ) + 1
. (15)

In this expression the Coriolis energy may be approxi-
mated as [9,10]

Ecor(MeV) 	 h̄ω0|δosc| = 41A−1/3|δosc|, (16)

where h̄ω0 is the mean oscillator frequency; δosc is the
potential deformation parameter. The ratio between this
parameter and β2 is determined by expression in [9]

δosc = 0.945β2

[
1− 4

3
π2

(
a0
R0

)2]
+ 0.34β22 , (17)

where a0 = 0.54 fm and R0 = r0A
1/3. In the second

step of our estimations we calculate the evaporation cross-
sections for the above-mentioned reactions from the fusion
cross-sections. The advanced statistical model (ASM), de-
scribed in detail in [6,11,12], allows us to take into account
the dynamical aspect of the fission-evaporation compe-
tition at the compound nucleus evolution along the de-
excitation cascade. The model accounts exactly for the
angular momentum and parity coupling, allows for the
neutron, proton, and α-particle multiple emission as well
as for a fission channel and full γ-cascade in the resid-
ual nuclei. Particular attention is devoted to the determi-
nation of the level densities. These are calculated in the
non-adiabatic approach allowing for rotational and vibra-
tional enhancements. These collective effects are gradually
removed above a certain energy. In the case of rotational
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enhancement this energy is related to the Coriolis force
which couples intrinsic and collective motions. Our level
densities acquire a dynamic aspect through the depen-
dence of the Coriolis force and of the rotational enhance-
ment on the nuclear shape, which is, in turn, obtained
from the classical model of the rotating liquid drop. In-
trinsic level densities are calculated using the Ignatyuk ap-
proach [13] which takes into account shell structure effects
and pairing correlation. Use of the correct level densities
is of fundamental importance for the present analysis as
they determine the phase space available for each channel,
a very essence that governs any statistical decay. In the
case of the evaporation residue production one should also
carefully consider the low energy level densities since this
is the energy interval in which most of the evaporation
residues are formed. That is why we use the super-fluid
model of the nucleus [14] in our calculations with the stan-
dard value of pairing correction ∆ = 12/

√
A. The yrast

lines are automatically included in our calculations by the
requirement that the total excitation energy should be
higher than the rotational one, otherwise the level density
is set to zero.

As far as the fission barriers are concerned, we use the
rotating droplet model predictions (angular momentum
dependent) as parameterized by Sierk [15] and allow for
angular momentum and temperature fade-out of the shell
corrections [6]. This is expressed by the formula for the
actual fission barrier used in our calculations:

Bfis(J, T ) = c Bm
fis(J)− h(T ) q(J) δW, (18)

with

h(T ) =

{
1 , T ≤ 1.65 MeV ,

k exp (−mT ) , T > 1.65 MeV,

and
q(J) = {1 + exp[(J − J1/2)/∆J ]}−1,

where Bmfis(J) is the parameterized macroscopic fission
barrier [15] depending on angular momentum J , δW =
δWsad − δWgs 	 −δWgs is the microscopic (shell) correc-
tion to the fission barrier taken from the tables [8] and
the constants for the macroscopic fission barrier scaling,
temperature and angular momentum dependencies of the
microscopic correction are chosen to be as follows: c = 1.0,
k = 5.809, m = 1.066 MeV−1, ∆J = 3h̄; for nuclei with
Z > 102 we use J1/2 = 20h̄. This procedure let the shell
corrections become dynamical quantities, too.

Dissipation effects, which delay fission, are treated
according to [16,17]. These include Kramers’ stationary
limit [18] and an exponential factor applied to Kramers’
fission width to account for the transient time, after which
the statistical regime is reached. The systematic obtained
by Bhattacharya et al. [19] gives the possibility of tak-
ing into account the incident energy per nucleon ε and
compound nucleus mass ACN dependencies of the reduced
dissipation coefficient βdis. βdis is the ratio between the
friction coefficient γ describing the coupling to the fission
degree of freedom and the reduced mass m of the sys-
tem. This ratio characterizes the dissipative and diffusive

motion. In the calculations we used the simple form

βdis(ε, ACN) = aε + bA3CN, (19)

where a = 0.18 and b = 0.357× 10−6 [19]. For the investi-
gated reactions the βdis values range from 6 to 7×1021 s−1.

In the present ASM calculations the target-projectile
fusion cross-section was determined by formula (2).

3 Results

The effect of the entrance channel can be studied by com-
paring the calculated evaporation residue cross-sections
with experimental ones. The dinuclear concept allows
us to consider the dinuclear system formation sequence,
its evolution to complete fusion or to competitive quasi-
fission stages. These stages are characterized by the cap-
ture cross-section (which is the probability of the dinu-
clear system formation), the intrinsic fusion barrier B∗

fus,
and the excitation energy E∗

DNS of the dinuclear system.
According to the scenario of the DNS-concept, if the max-
imum value of E∗

DNS is lower than B∗
fus, then the dinuclear

system cannot be transformed into a compound nucleus
and for all values of beam energy, the heavy ion colli-
sions end in deep inelastic (damped) collisions or quasi-
fission processes. The reason is that the capture and fusion
processes have energy windows determined by the par-
ticular characteristics of the entrance channel: the mass
and charge of the colliding nuclei, their shape and shell
structure, the beam energy and orbital angular momen-
tum, because the potential energy surface is a function of
the quantities defined above. The capture is determined
by peculiarities of the nucleus-nucleus potential which
depends on the nuclear shape and orbital angular mo-
mentum. The quasi-fission barrier Bqf is calculated as a
depth of the potential well in V (R(t)) which includes the
change due to nucleon exchange and particle-hole exci-
tations in nuclei. The ratio between the intrinsic fusion
barrier B∗

fus and the quasi-fission barrier Bqf plays a de-
cisive role for the formation of the compound nucleus. As
seen from Table 1 the dependence of these quantities on
the charge (and mass) of the compound nucleus being
formed at the indicated beam energy is strong: the in-
trinsic fusion barrier B∗

fus increases with atomic number
of the projectile when the same target-nucleus is used.
The ratio Bqf/B

∗
fus decreases gradually from 0.53 which

is obtained for the reaction 50Ti +208Pb to 0.07 for the
reaction 86Kr +208Pb. The maximum value of the pos-
sible excitation energy E

∗(max)
DNS of the dinuclear system

is determined by the largest initial beam energy lead-
ing to formation of the dinuclear system and the mi-
nimum of the well of the nucleus-nucleus potential V (R).
The kinetic energy of the collision is transformed into ex-
citation energy of the nuclei due to the interaction of the
motion of nucleons inside the nuclei and the relative mo-
tion of the nuclei. This excitation energy value decreases
when the lifetime of the dinuclear system becomes shorter.
This time is determined by the beam energy and the depth
of the potential well which decreases when the total charge
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Table 1. The calculated maximum value of the beam energy E
(max)
lab leading to the formation of a dinuclear system, and the

corresponding excitation energy of the compound nucleus (CN) E
∗(max)
CN and the dinuclear system E

∗(max)
DNS for the considered

reactions. The intrinsic fusion barrier B∗
fus and quasi-fission barrier Bqf determine the competition between complete fusion and

quasi-fission in the dinuclear system concept. The range E
∗(max)
DNS −B∗

fus = ∆E∗
DNS characterizes the width of the energy window

for fusion at the given entrance channel.

Reaction CN E
(max)
lab E

∗(max)
CN E

∗(max)
DNS B∗

fus Bqf Bqf/B∗
fus ∆E∗

DNS

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

50Ti + 208Pb 258104 286.5 61.50 45.50 13.55 7.24 0.53 32.0
58Fe + 208Pb 266108 297.0 28.38 30.20 16.61 4.94 0.30 13.6
64Ni + 208Pb 272110 330.0 26.10 26.50 17.61 3.61 0.20 8.9
64Ni + 209Bi 273111 328.3 23.56 23.57 15.30 2.78 0.18 8.3
70Zn + 208Pb 278112 347.5 15.82 22.00 20.52 3.42 0.17 1.5
70Zn + 209Bi 279113 350.0 14.45 22.18 19.30 3.27 0.17 2.8
76Ge + 208Pb 284114 387.5 21.25 26.35 23.12 3.23 0.16 3.2
86Kr + 208Pb 294118 450.0 15.77 21.05 20.42 1.36 0.07 0.6

number of the system increases or when the mass asym-
metry of colliding nuclei decreases. The calculations show
that capture of nuclei is possible at higher energies lead-
ing to the formation of the rotating dinuclear system when
there is a potential well of the nucleus-nucleus interaction.
But the increase of the orbital angular momentum leads
to an increase of the intrinsic fusion barrier B∗

fus and a de-
crease of the quasi-fission barrier due to rotational energy.
As a result, the fusion cross-section decreases drastically
and the amalgamation of nuclei becomes more difficult.

The measured and calculated excitation functions for
the production of the superheavy elements from ruther-
fordium (Z = 104) to element 112 by the cold fusion reac-
tions 50Ti +208Pb, 50Fe +208Pb, 64Ni +208Pb, 64Ni +209Bi
and 70Zn +208Pb are presented in figs. 6-10. In these fig-
ures and in figs. 11 and 12, the thicker solid curve shows
the fission barrier (Bfis(J, T )) of the compound nucleus
formed in the considered reactions. Its value is labeled on
the right axis. Bfis(J, T ) was calculated by eq. (18). The
dashed line shows the fusion cross-section calculated by eq.
(2) and the dotted line shows the calculated quasi-fission
cross-section that is obtained as a difference between the
capture cross-section calculated by eq.(3) and the fusion
cross-section. The values are labeled on the left axis. The
top axis shows the excitation energy E∗ of the compound
nucleus. Its value is connected with the beam energy Elab
presented on the bottom axis:

E∗ = Elab
AT

AP + AT
+ Qgg

where Qgg is the reaction Q-value.
In fig. 6, the symbols with the error bars show the mea-

sured excitation functions of the evaporation residue pro-
duction for the reaction 50Ti +208Pb; in the upper panel,
diamonds and thin solid curve mark the total measured
and calculated evaporation residue cross-section, respec-
tively. In the bottom panel, the measured 1n-, 2n-, and
3n- excitation functions are presented by the solid circles,
open triangles, and solid squares, respectively. The calcu-
lated excitation functions of the 1n-, 2n-, 3n-evapora- tion

channels are shown by the dot-dashed, dot-dot-dashed
and short dashed curves. The calculation shows a max-
imum value of the excitation function for an energy win-
dow which is determined by the entrance channel of the
reaction. The evaporation residue cross-section σer de-
pends on the survival probability Wsur(E, �) during the
de-excitation cascade at the bombarding energy E and
orbital angular momentum �.

In the synthesis of elements Z = 110, 111 and 112 only
the 1n-evaporation channel was observed, in the case of
hassium (Z = 108) also the 2n channel. In figs, 7-10,
the measured excitation functions are shown by solid cir-
cles with error bars. The calculated excitation functions
of 1n- and 2n-evaporation channel are presented by the
dot-dashed and dot-dot-dashed curves, respectively.

The comparison between the experimental results and
calculations for the reactions 56Fe + 208Pb, 64Ni+208Pb,
64Ni+209Bi, and 70Zn+208Pb is presented in figs. 7-10.
The use of a microscopic approach including shell effects
for fusion and of the advanced statistical model for the de-
excitation cascade in our calculations allows us to obtain
excitation functions in good agreement with the measured
evaporation residues.

In Table 1 we compare the values for the intrinsic fu-
sion barrier B∗

fus and the maximum excitation energy of
the dinuclear system E

∗(max)
DNS for the investigated reac-

tions. Moreover, the difference E
∗(max)
DNS − B∗

fus characte-
rizes the energy window ∆E∗

DNS for fusion at the given
entrance channel. One can see from Table 1 that for the
reactions leading to the more massive compound nuclei
the ∆E∗

DNS interval decreases, and consequently the beam
energy window that contributes to the fusion cross-section
decreases.

The minimum value of the calculated excitation en-
ergy (E∗(min)

CN ) is determined by the maximum value of
the driving potential which is at the charge (mass) num-
bers between Z = 0 and Z = ZP (for the case ZP < ZT,
see fig. 5). It corresponds to the value of the poten-
tial energy surface at the saddle point on the way to
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Fig. 6. Top panel: the calculated quasi-fission (dotted curve),
fusion (dashed curve), total evaporation residue (thin solid
curve) excitation functions and the measured total evaporation
residue excitation function (diamonds) as a function of excita-
tion energy of the compound nucleus for the reaction 50Ti +
208Pb (left ordinate axis). The thick solid curve shows the fis-
sion barrier for the compound nucleus 258Rf (right ordinate
axis). Bottom panel: measured (symbols) excitation function
for production of rutherfordium by the same reaction as func-
tion of beam energy Elab (energy in the middle of the target,
scale at the bottom axis) and excitation energy E∗ (scale at the
top axis): solid circles, open triangles, and solid squares are for
1n-, 2n-, 3n-evaporation channels, respectively. The calculated
results (curves) for the corresponding quantities: dot-dashed,
dot-dot-dashed and short-dashed curves are for 1n-, 2n-, 3n-
evaporation channels, respectively.

fusion. In Table 2, the calculated values of E
∗(min)
CN are

compared with the minimum values of excitation energy
E

∗(min)
exp at which the evaporation residues were measured

in the experiments in GSI for synthesis of superheavy ele-
ments Z = 104, 108, 110, 111 and 112 and at Berkeley for
Z = 118 [20]. For all investigated reactions, the experi-
mental point of the residue nucleus formation after one-
neutron emission from the excited compound nucleus cor-
responding to the smallest value of the excitation energy
E∗
exp is in agreement with the calculated minimum exci-

tation energy E
∗(min)
CN , or it is a little higher (E∗

exp = 12.7

MeV in comparison with E
∗(min)
CN = 10.9 MeV) for the

compound nucleus 273111. This is because at E∗
CN of about
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10.9 MeV the fusion cross-section is lower than 10−10 mb,
and a residue cross-section is lower than 10−13 mb. It is
practically impossible to receive experimental data below
excitation energies of E∗

CN = 10.9 MeV. Our calculations
predict that only at excitation energies between 12 and 14
MeV the cross-sections reach values above 1 pb. The evap-
oration residue measurements by cold fusion reactions are
limited at lower excitation energies by the intrinsic fusion
barrier B∗

fus which leads to fusion cross-sections of the or-
der of 10−5 mb at values of E∗

CN of about 10 MeV. At
excitation energies higher than about 20 MeV the synthe-
sis of evaporation residues is limited by increasing fission

335 340 345 350 355 360
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

 ER, 1n - calc.
 ER, 2n - calc.
 Fus. calc.
 Quasifiss.

70Zn + 209Bi = 279113

σ  
 (µ

b
)

E lab (MeV)

6 8 10 12 14 16 18 20 22 24
E*  (MeV)

-2

-1

0

1

2

3

4

5

6

7

 Bfis

B
fis

(M
eV

)

Fig. 11. Same as fig. 8, but for the reaction 70Zn+209Bi. The
thick horizontal line with the arrow is the upper limit for the
1n-evaporation channel obtained in the experiment at GSI.
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Fig. 12. Same as fig. 8, but for the reaction 76Ge+208Pb.

probability of the compound nucleus (in competition with
light particle emission) due to the strong decrease of the
fission barrier.

The evaporation residue excitation functions for the
synthesis of the superheavy elements Z = 113 and Z =
114 by the reactions 70Zn + 209Bi and 76Ge + 208Pb,
respectively, were estimated using the same value for the
r0 parameter. The results are presented in figs. 11 and
12. In these figures, the fusion cross-section is presented
by the dashed curve, the excitation functions of the 1n-
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Table 2. The comparison between the calculated minimum
value of excitation energy for the compound nucleus (CN)

E
∗(min)
CN and the measured one E

∗(min)
exp .

CN E
∗(min)
CN (MeV) E

∗(min)
exp (MeV)

258104 10.9 10.2
266108 10.3 10.8
272110 10.5 11.1
273111 10.9 12.7
278112 8.9 10.0
279113 16.2 –
284114 14.1 –
294118 18.0 13.3

and 2n-evaporation channel are shown by dot-dashed and
dot-dot-dashed curves, respectively. The maximum of the
excitation function for the 2n-evaporation channel is larger
than for the 1n-evaporation channel. In the case of the
reaction 70Zn + 209Bi the calculated evaporation residue
cross-section after 2-neutron emission is some picobarns
at E∗ 	 16 MeV or Elab 	 350 MeV. The upper limit for
the 1-n evaporation channel obtained in the experiment at
GSI in March-April 1998 was 0.6 pb at E∗ = 10.7 MeV.

In the framework of the used model based on the DNS
concept, we also performed calculation for the 86Kr +
208Pb reaction leading to the compound nucleus 294118.
We obtained information on the entrance channel dyna-
mics (see Tables 1 and 2). We also estimated the upper
limit of the cross-section for the superheavy nucleus 293118
to be about 4.6× 10−3 pb. This value is much lower than
the one measured by the Berkeley group [20].

4 Conclusion

The combined dynamical and statistical model based on
the dinuclear system approach allowed us to estimate ex-
citation functions of quasi-fission, fusion, and formation of
evaporation residues in cold fusion reactions with massive
nuclei. The capture stage was calculated using the dyna-
mical model and for calculation of the fusion stage a sta-
tistical approach was used. The obtained optimal beam
energy or excitation energy of the compound nucleus is in
good agreement with the experimental data. The fusion
excitation functions calculated in this way were used to es-
timate the surviving probability of the formed compound
nucleus relative to fission in the frame of the advanced
statistical model for the de-excitation cascade. The exci-
tation functions obtained in this paper are in good agree-
ment with the ones measured in the GSI experiments.
The observed decrease of the width of excitation functions
seems to be connected with the decreasing ratio between
quasi-fission barrier Bqf and intrinsic barrier B∗

fus which
means that the potential well becomes smaller for the sys-
tems formed from more massive fragments. Moreover, the
beam energy window that contributes to the capture (and
then to the fusion production) is related to the energy

range ∆E∗
DNS. In addition, the evaporation residue mea-

surements for cold fusion reactions are limited to lower
excitation energies by the height of the saddle point of
the potential energy surface U(A,Z;R, �) on the way to
fusion (E∗(min)

CN ), and for higher excitation energies they
are limited by the fission process due to the strong de-
crease of the fission barrier.

The effect of the entrance channel was studied by
analyzing the quantities in detail which were used in the
calculation of the fusion cross-section. These are the cap-
ture cross-section (which is the formation probability of
the dinuclear system in competition with quasi-fission),
the intrinsic fusion barrier B∗

fus, the quasi-fission barrier
Bqf , and the excitation energy E∗

DNS of the dinuclear sys-
tem. According to the scenario of the DNS-concept, if the
maximum value of E∗

DNS is lower than B∗
fus the dinuclear

system cannot be transformed into a compound nucleus.
The entrance channel dynamics for the 86Kr + 208Pb reac-
tion is close to such a critical condition. In the framework
of the DNS model, we estimate the value of 0.6 MeV (see
Table 1) for the E∗

DNS energy window that can lead to
the fusion of the dinuclear system, and then to the for-
mation of the superheavy element with Z=118. The dif-
ference (E∗(max)

DNS − B∗
fus) characterizes the energy window

for fusion at a given entrance channel. It means that only
those theoretical approaches which include the peculiari-
ties of projectile and target nuclei, as well as dynamics of
the reaction mechanisms, are able to predict the height,
width and position of the energy window favorable for
the synthesis of superheavy elements. We found that, for
the reaction 70Zn + 209Bi, the maximum of the excitation
function for the 2n-evaporation channel is larger than for
the 1n-evaporation channel: the calculated cross-section
of the evaporation residue is some picobarns at E∗ 	 16
MeV or Elab 	 350 MeV. The measured upper limit in
the experiment at GSI in March-April 1998 was 0.6 pb
at E∗ = 10.7 MeV. It is anticipated that the increase of
the beam energy to get E∗ 	 16 MeV would be favorable
to observe events of the synthesis of element Z = 113.
The estimated upper limit of the cross-section for the su-
perheavy nucleus 293118 to be about 4.6× 10−3 pb. This
value is much lower than the one measured by the Berke-
ley group [20].
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Appendix A.

The nucleus-nucleus potential is calculated as follows:

V0(R) = VC(R) + Vnucl(R) + Vrot(R), (A.1)

where VC(R), Vnucl(R), and Vrot(R) are the Coulomb, nu-
clear, and rotational potentials, respectively. The nuclear
shape is important in the calculation of the Coulomb and
the nuclear interactions between colliding nuclei. Thus,
the Coulomb interaction of deformed nuclei (with a quad-
rupole deformation) can be calculated according to the
following expression taken from [21]:

VC(R) =
Z1Z2

R
e2

+
Z1Z2
R3

e2

{(
9

20π

)1/2 2∑
i=1

R20iβ
(i)
2 P2(cosα′

i)

+
3
7π

2∑
i=1

R20i

[
β
(i)
2 P2(cosα′

i)
]2}

, (A.2)

where α′
1 = α1+Θ, α′

2 = π−(α2+Θ), sinΘ = |L|/(µṘR);
Zi, β

(i)
2 , and α′

i are (for each fragment) the atomic num-
ber, the quadrupole deformation parameter, and the an-
gle (see fig. 3) between the line connecting the centers of
mass of the nuclei and the symmetry axis of the fragment
i(i = 1, 2), respectively. Here, R0i = r0A

1/3
i , r0 = 1.18 fm

and P2(cosα′
i) is the second term of the second type of

Legendre polynomial.
The nuclear part of the nucleus-nucleus potential is

calculated using the folding procedure between the effec-
tive nucleon-nucleon forces feff [ρ(x)] suggested by Migdal
[22] and the nucleon density of the projectile- and the
target-nucleus:

Vnucl(R) =
∫

ρ
(0)
1 (r − R1)feff [ρ]ρ

(0)
2 (r − R2)d3r , (A.3)

feff [ρ] = 300
(

fin + (fex − fin)
ρ(0)− ρ(r)

ρ(0)

)
. (A.4)

Here fin = 0.09, fex = −2.59 are the constants of the
effective nucleon-nucleon interaction; ρ = ρ

(0)
1 + ρ

(0)
2 ; Ri

(i = 1, 2) is the position of the center of mass of the frag-
ment i. The nucleon densities are assumed to have a Fermi
distribution:

ρ
(0)
i (r − Ri) = ρ

(0)
i (r,Ri(t), β

(i)
2 , β

(i)
3 )

=
{
1 + exp

[ |r − Ri(t)| − R̃i(β
(i)
2 , β

(i)
3 )

a0

]}−1
, (A.5)

R̃i(β
(i)
2 , β

(i)
3 ) = R0i(1 + β

(i)
2 Y20(αi) + β

(i)
3 Y30(αi)), (A.6)

where a0 = 0.54 fm. The shape of the nuclei of the din-
uclear system changes with the evolution of the mass
asymmetry degrees of freedom: β2 = β2(Z,A) and β3 =
β3(Z,A). In order to calculate the potential energy sur-
face as a function of the charge number, we use the values

of β
(2+)
2 from the data in [23] and the values of β

(3−)
3 from

the data in [24].
Expressions for the friction coefficients

γR(R(t)) =
∑
i,i′

∣∣∣∣∂Vii′(R(t))
∂R

∣∣∣∣
2

B
(1)
ii′ (t), (A.7)

γθ(R(t)) =
1

R2

∑
i,i′

∣∣∣∣∂Vii′(R(t))
∂θ

∣∣∣∣
2

B
(1)
ii′ (t), (A.8)

and the dynamic contribution to the nucleus-nucleus po-
tential

δV (R(t)) =
∑
i,i′

∣∣∣∣∂Vii′(R(t))
∂R

∣∣∣∣
2

B
(0)
ii′ (t), (A.9)

were obtained in [5] by estimating the evolution of the cou-
pling term between relative motion of nuclei and nucleon
motion inside nuclei; B

(0)
ii′ (t) is given by eq. (A.11).

The dynamic correction of the reduced mass δµ(R(t))
is calculated using the expression

δµ(R(t)) =
∑
i,i′

∣∣∣∣∂Vii′(R(t))
∂R

∣∣∣∣
2

B
(2)
ii′ (t), (A.10)

where B
(2)
ii′ (t) is given by eq. (A.3).

B
(n)
ik (t) =

2
h̄

∫ t

0

dt′(t − t′)n exp
(

t′ − t

τik

)
× sin [ωik (R(t′)) (t − t′)] [ñk(t′)− ñi(t′)],(A.11)

h̄ωik = εi + Λii − εk − Λkk . (A.12)

Here ñi is a diagonal matrix element of the density matrix
which is calculated according to the model presented else-
where [5,25]; τik = τiτk/(τi + τk); τi is the life time of the
quasiparticle excitations in the single-particle state i of
nucleus. It determines the damping of single-particle mo-
tion. The value of τi is calculated using the results of the
theory of quantum liquids [26] and the effective nucleon-
nucleon forces from [22]:

1

τ
(α)
i

=
√
2π

32h̄ε
(α)
FK

[
(fK − g)2 +

1
2
(fK + g)2

]

×
[(

πTK

)2
+

(
ε̃i − λ

(α)
K

)2]

×
[
1 + exp

(λ
(α)
K − ε̃i

TK

)]−1
, (A.13)

where

TK(t) = 3.46

√
E∗
K(t)

〈AK(t)〉 (A.14)

is the effective temperature determined by the amount of
intrinsic excitation energy E∗

K = E
∗(Z)
K +E

∗(N)
K and by the

mass number 〈AK(t)〉 (with 〈AK(t)〉 = 〈ZK(t)〉+〈NK(t)〉).
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In addition, λ
(α)
K (t) and E

∗(α)
K (t) are the chemical po-

tential and intrinsic excitation energies for the proton
(α = Z) and neutron (α = N) subsystems of the nucleus K
(K = 1(projectile), 2(target)), respectively. Furthermore,
the finite size of the nuclei and the difference between the
numbers of neutrons and protons makes it necessary to
use the following expressions for the Fermi energies [22]:

ε
(Z)
FK

= εF

[
1− 2

3
(
1 + 2f ′

K

) 〈NK〉 − 〈ZK〉
〈AK〉

]
,

ε
(N)
FK

= εF

[
1 +

2
3
(
1 + 2f ′

K

) 〈NK〉 − 〈ZK〉
〈AK〉

]
, (A.15)

where εF=37 MeV,

fK = fin − 2
〈AK〉1/3 (fin − fex),

f ′
K = f ′

in −
2

〈AK〉1/3 (f
′
in − f ′

ex) (A.16)

and fin = 0.09, f ′
in = 0.42, fex = −2.59, f ′

ex = 0.54,
g = 0.7 are the constants of the effective nucleon-nucleon
interaction.

Finally, the rotational potential is:

Vrot(R) = h̄2
l(l + 1)
2µR2

. (A.17)

Appendix B.

The angles between the symmetry axis of the projectile-
and target-nucleus and the beam direction are α1 and α2,
respectively, (fig. 3). The spherical coordinate system O
with the vector r, angles θ and φ is placed at the mass
center of the target-nucleus and the Oz axis is directed
opposite to the beam. In this coordinate system, the di-
rection of the vector R connecting the mass centers of the
interacting nuclei has angles Θ and Φ. The coordinate sys-
tem is chosen so that the planes, in which the symmetry
axes of nuclei are located, cross the Oz line and form an
angle Φ. For head-on collisions is Θ = 0 and Φ = φ.

The nucleon distribution functions of interacting nu-
clei in the integrand (A.3) can be expressed using these
variables in the same coordinate system O.

In the O system the symmetry axis of the target-
nucleus is turned through an α2 angle, so its nucleon dis-
tribution function is as follows:

ρ
(0)
2 (r) = ρ0

{
1 + exp

[
r − R̃2(β

(2)
2 , β

(2)
3 ; θ′2)

a

]}−1
, (B.1)

R̃2(β
(2)
2 , β

(2)
3 ; θ′2) = R

(2)
0

(
1 + β

(2)
2 Y20(θ′2) + β

(2)
3 Y30(θ′2)

)
,

where ρ0=0.17 fm−3,

cos θ′2 = cos θ cos(π − α2) + sin θ sin(π − α2) cosφ . (B.2)

The mass center of the projectile-nucleus is shifted to
the end of the vector R and its symmetry axis is turned

by the angle π −α1. According to the transformation for-
mulae of the parallel transfer of vectors the variables of
the transferred system O′ are as follows:

r′2 = r2 + R2 − 2rR cos(ω12), (B.3)
cos(ω12) = cos θ cosΘ + sin θ sinΘ cos(φ − Φ),

cos θ′1 =
(r cos θ − R cosΘ)

r′
,

cosφ′
1 = (1 + tan2 φ′

1)
−1/2,

tanφ′
1 =

r sinφ sin θ − R sinΘ sinΦ

r cosφ sin θ − R sinΘ cosΦ
.

In the coordinate system O′, the deviation of the sym-
metry axis of projectile-nuclei relative to the O′z′ axis is
determined by the angle

cos θ′′1 = cos θ′1 cos(π − α1) + sin θ′1 cosφ′
1. (B.4)

Now the nucleon distribution function of the projectile-
nucleus looks like

ρ
(0)
1 (r′) = ρ0

{
1+exp

[
r′ − R̃1(β

(1)
2 , β

(1)
3 ; θ′1)

a

]}−1
, (B.5)

R̃1(β
(1)
2 , β

(1)
3 ; θ′1) = R

(1)
0

(
1 + β

(1)
2 Y20(θ′1) + β

(1)
3 Y30(θ′1)

)
.

The nuclear part of the nucleus-nucleus potential was cal-
culated by (A.3) using the folding procedure of the effec-
tive nucleon-nucleon forces by Migdal [22] with the nu-
cleon distribution functions (B.1) and (B.5) of interacting
nuclei.
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